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Abstract

Blink detection is a critical component of eye-tracking research, particularly in
pupillometry, where data loss due to blinks can obscure meaningful insights.
Existing methods often rely on fixed thresholds or device-specific noise profiles,
which may lead to inaccuracies in detecting blink onsets and offsets, especially
in heterogeneous datasets. This study introduces a novel blink detection model
that dynamically adapts to varying pupil size distributions, ensuring robust-
ness across different experimental conditions. The proposed method integrates
dynamic thresholding, which adjusts based on the mean pupil size of valid sam-
ples, Gaussian smoothing, which reduces noise while preserving signal integrity,
and adaptive boundary refinement, which refines blink onsets and offsets based on
a trends in the smoothed data. Unlike traditional approaches that merge closely
spaced blinks, this model treats each blink as an independent event, preserv-
ing temporal resolution, which is essential for cognitive and perceptual studies.
The model is computationally efficient and adaptable to a wide range of sam-
pling rates, from low-frequency (e.g., 250 Hz) to high-frequency (e.g., 2000 Hz)
data, ensuring consistent blink detection across different eye-tracking setups,
making it suitable for both real-time and offline eye-tracking applications. Exper-
imental evaluations demonstrate its ability to accurately detect blinks across
diverse datasets. By offering a more reliable and generalizable solution, this model
advances blink detection methodologies and enhances the quality of eye-tracking
data analysis across research domains.

Keywords: Blink detection, pupillometry, eye-tracking, dynamic thresholding,
Gaussian smoothing
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1 Introduction

Eye tracking technology has emerged as a fundamental methodological tool in various
scientific disciplines, offering unique insights into multiple dimensions of human cog-
nition, attention, and decision-making processes [1–8]. By recording the movements of
the eyes and changes in pupil size, eye tracking technology allows researchers to objec-
tively quantify visual engagement and explore underlying neural and psychological
mechanisms [9–11]. This technology has found broad applications, including under-
standing reading behaviors and attentional patterns [9], decoding emotional states
[12, 13], informing clinical practices [14], and examining decision-making strategies
[1]. The reliability of eye-tracking data has advanced with the development of sophis-
ticated devices, making it a foundation of modern research. However, eye-tracking
data’s intrinsic complexity and variability demands accurate preprocessing to ensure
that analyses yield correct and meaningful results, particularly when addressing data
disruptions caused by eye blinks.

Blinks, natural physiological events characterized by rapid eyelid closure and
reopening (for an extensive review, see [15]), present a notable challenge to the integrity
and continuity of eye-tracking data [16, 17]. In most eye-tracking devices, blinks are
identified when the measured pupil size suddenly drops to zero [18–20]. This occurs
during natural blinking, as the eyelids mask the pupil [21], or due to missing data when
the system does not detect the pupil accurately. Such failures may result from incor-
rect device calibration, participants momentarily moving out of the tracking range, or
other technical limitations, leading to lost pupil signals. These interruptions, which
are registered as zero pupil size, frequently cause the loss of concurrent measures (e.g.,
gaze position), thus creating gaps that require careful handling. Figure 1 illustrates a
natural blink, and Figure 2 highlights an extreme instance of a long blink, which is
not physiological but arises from factors such as the participant momentarily looking
away, drifting out of the range of the device, or recording malfunctions.

Fig. 1 Visualization of two blink events leading to gaps in pupil size data. Regions corresponding
to blink occurrences are empty, reflecting the absence of pupil size measurements.

Blinks disrupt the recording process, causing missing or compromised data seg-
ments [22]. Such interruptions introduce noise, mask key behavioral patterns, and
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Fig. 2 A long-duration blink where the eye tracker lost the pupil signal from approximately 1900
ms to 4100 ms. Note that this happened due to the participant’s looking at the keyboard to type
responses to a task, ”Reference: Author”

reduce analysis reliability by creating data gaps [16, 23] and artifacts [24], especially
in studies that require continuous and accurate measurements of pupil size or fixation
points.

Various methods have been developed to address blinks in eye-tracking data, each
with varying degrees of sophistication. The most straightforward approach excludes
affected data segments [25]. Although simple, this leads to the loss of valuable infor-
mation and can introduce biases, mainly if blink events are not uniformly distributed
[26–28]. More advanced methods include velocity-based algorithms [29], which infer
blink onsets and offsets from pupil size velocity changes, and noise-based techniques
[22, 30] that identify blink-related noise patterns. Pedrotti [31] introduced a data-
driven method to correct blink-related artifacts within pupil diameter measurements.
In particular, Hershman et al. [22] proposed an algorithm that uses device-specific noise
characteristics to detect blink boundaries. Despite these advancements, many methods
remain constrained by a lack of adaptability [22], with researchers often implementing
ad-hoc pipelines. These range from ignoring missing data to artificial interpolation,
which can degrade the accuracy of subsequent analyses [32]. Moreover, low-speed eye
tracking protocols complicate accurate event detection, affecting higher-level analyses
[31].

The limitations of existing blink detection methods highlight the need for more
robust and generalizable approaches. Currently, many techniques are based on
predefined thresholds [31] or device-specific noise profiles [22], compromising the effec-
tiveness in diverse data sets. Subtle, short-duration, and overlapping blinks often result
in inaccuracies in onset and offset detection [33, 34]. Additionally, edge cases remain
problematic, for example, when recordings begin or end with missing data, making it
difficult to refine the boundaries of blink detection [35]. These challenges underscore
the importance of developing more flexible methods that detect blinks without relying
on rigid device-specific assumptions.

To address these challenges, this study introduces a novel blink detection model
that enhances reliability across diverse experimental conditions. The model incor-
porates dynamic thresholding (see Section A), Gaussian smoothing (see Secttion
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B), and a trend-based boundary refinement (see Section C). Unlike conventional
approaches that rely on fixed thresholds or device-specific noise patterns, this model
adapts dynamically to pupil size fluctuations, ensuring robust performance across
different eye-tracking systems and experimental designs. By treating each blink
as an independent event, it preserves temporal resolution, making it suitable for
cognitive neuroscience, fatigue monitoring, and clinical pupillometry research. This
provides researchers with a versatile and computationally efficient tool for handling
blink-induced data disruptions, ultimately improving the integrity of eye-tracking
analyses

2 Methods

The proposed model first applies a dynamic thresholding strategy to establish a robust
criterion for identifying missing data segments. This approach derives a threshold as
a fraction of the mean pupil size computed on nonzero samples. This threshold is
mathematically defined as:

T = k · 1

N

N∑
i=1

P (i), (1)

where P (i) denotes the pupil size at sample i, N is the number of valid (non-zero)
samples, and k is a threshold ratio, typically ranging between approximately 0.2 and
0.5 [29, 36]. The threshold T is dynamically calibrated based on the mean pupil size
of valid samples, ensuring robustness across datasets where pupil size reductions may
indicate blinks even if the pupil does not reach zero. The threshold ratio k acts as a
scaling factor, allowing detection sensitivity to be adjusted for different experimental
conditions and participants. This approach prevents over-sensitivity in large pupils and
missed blinks in smaller pupils. By defining the threshold T as a fraction of the mean
pupil size, the model ensures that detection is not affected by absolute differences in
pupil size across individuals or devices. (for more details, see Section D, Figure 3).

Fig. 3 Dynamic thresholding establishes an adaptive threshold for detecting blink events based on
pupil size distribution
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With the threshold established, the next step constructs a binary indicator signal
M(t) to mark the intervals of missing data; this method is presented by [22] and these
intervals reserve the data points for further steps. Here, M(t) equals 1 if the sample
is considered missing (i.e., below the threshold) and 0 otherwise:

M(t) =

{
1 if P (t) ≤ T,

0 otherwise.
(2)

This binary representation delineates between intact and missing data segments,
enabling systematic detection of blink events as shown in Figure 4.

Fig. 4 The binary indicator signal marks missing data points associated with blink events, distin-
guishing them from valid pupil size measurements.

Transitions in M(t) are analyzed using forward differencing to identify the onset
and offset of blinks:

∆M(t) = M(t+ 1)−M(t) (3)

where a positive change (∆M(t) = 1) corresponds to a blink onset, and a negative
change (∆M(t) = −1) marks a blink offset. This provides the initial delineation of
blink intervals (Figure 5).

The raw pupil size signal undergoes Gaussian smoothing to refine these initial
estimates further [36–39]. This step reduces noise while preserving critical transitions,
improving the clarity of onset and offset boundaries. The smoothed signal Psmooth(t)
is obtained using convolution with a Gaussian kernel:

Psmooth(t) = P (t) ∗G(t), (4)

where G(t) represents the discrete Gaussian kernel. Filtering out high-frequency
fluctuations facilitates more accurate boundary detection (Figure 6).

Next, the detected onsets and offsets are refined by tracking trends in the smoothed
signal as shown in the Figure 7. This ensures that the final blink boundaries align
closely with meaningful physiological changes rather than transient noise. The refined
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Fig. 5 Initial detection of blink onsets and offsets. These preliminary values may be further refined
in subsequent steps to improve accuracy

Fig. 6 Gaussian smoothing reduces high-frequency noise while preserving essential signal character-
istics, enhancing the accuracy of detected blink boundaries.

Fig. 7 Refinement of blink boundaries using a trend tracking.
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onset tonset is determined by searching backward from the initially detected onset until
the smoothed signal stabilizes at a low level:

tonset = arg min
t≤trawonset

Psmooth(t). (5)

Similarly, the refined offset toffset is found by moving forward from the raw offset:

toffset = arg max
t≥trawoffset

Psmooth(t). (6)

Unlike some alternative methods that merge closely spaced blinks into a single
event, this model treats each blink as an independent event. This is particularly impor-
tant for studies analyzing blink frequency, inter-blink intervals, or temporal dynamics,
ensuring that every closure is counted as a discrete event. and finally as an optional
illustration you can see the final detected area as blink in the Figure 8

Fig. 8 Final delineation of blink events. In this section, the detected blink area is shown in red color.

Figure 9 shows an example of the model successfully detecting and delineat-
ing blink onsets and offsets, resulting in a cleaner and more interpretable signal. In
addition, Figure 10 provides a more challenging scenario, demonstrating the robust-
ness of the model in handling extreme conditions. Even when faced with atypical
blink patterns—ranging from extremely short to unusually long signal losses due to
participant movement or gaze deviation—the model adaptively refines blink bound-
aries, maintaining reliable detection performance across a broad spectrum of recording
conditions.

Finally, all steps are taken together; Figure 11 shows the plot of all steps done with
the function.

Advantages of the Proposed Model

The proposed blink detection model introduces several key improvements over tra-
ditional methodologies, enhancing its applicability and reliability in pupillometry
research. A central innovation of the model is its dynamic thresholding mechanism,
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Fig. 9 Demonstration of the model-based blink onset and offset detection. The plot illustrates how
the model accurately identifies blink events within the pupil size signal, ensuring clear delineation of
blink boundaries.

Fig. 10 An extreme case involving multiple blink events. The model detects a very short blink (offset
at 2 ms), a typical blink (508–643 ms), and a prolonged blink (1843–4194 ms) caused by participant
movement or gaze redirection. This example highlights the model’s flexibility and robustness in
adapting to diverse and challenging data conditions.

which determines missing data based on a fraction of the mean pupil size of valid sam-
ples. Unlike fixed-threshold approaches that assume blinks correspond strictly to zero
pupil size, this method adapts to interindividual differences and baseline fluctuations
by setting a relative threshold. This adaptability allows for greater robustness across
datasets with varying noise levels, ensuring that both full and partial blinks—where
pupil size significantly decreases but does not reach zero—can be detected.

A second major improvement is the incorporation of Gaussian smoothing, which
effectively reduces noise while preserving key signal features [40]. Unlike simple aver-
aging filters, Gaussian smoothing assigns greater weight to central data points within
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Fig. 11 This figure illustrates the complete blink detection pipeline, presented in a sequence of steps
arranged in a 3 × 2 subplot format. In Step 1, a dynamic threshold is computed based on the non-
zero pupil size values, providing a baseline against which potential blinks are assessed. In Step 2, a
binary signal highlights intervals where pupil size falls below this threshold, indicating potential blink
periods. In Step 3, initial blink onsets and offsets are identified as transitions in the binary signal,
providing a preliminary segmentation of blink events. In Step 4, Gaussian smoothing with reflective
padding is applied to reduce noise and minimize edge artifacts in the pupil size data. Building on
this, Step 5 refines the blink boundaries by shifting onsets and offsets to ensure they align with
the smooth signal’s physiologically plausible transitions. Finally, in Step 6, zeros are replaced with
NaNs to prevent line continuation through blink periods, and the detected blink intervals are visually
emphasized as shaded red rectangles, clearly delineating the final blink events.

the window, minimizing artifacts and preventing distortions introduced by abrupt sig-
nal changes. This approach is particularly beneficial in datasets with high-frequency
fluctuations or measurement noise [21, 41], enabling more precise delineation of blink
onsets and offsets.

Another distinguishing feature of the model is its refinement strategy for blink
boundaries. Instead of relying solely on abrupt pupil size changes, the model iteratively
refines blink onsets and offsets by tracking trends in the smoothed pupil signal. This
ensures that detected blink intervals align closely with physiological eyelid movements,
reducing false positives while maintaining sensitivity to short-duration or subtle blinks
that conventional methods may overlook.

Unlike methods that merge consecutive blinks based on a fixed time threshold,
our approach preserves inter-blink intervals, allowing for a more accurate estimation
of blink frequency and temporal dynamics. This is particularly important in fatigue
detection studies, where blink rate variability provides key insights into cognitive state
fluctuations. For instance, some models, such as that of [22], concatenate closely spaced
blinks into a single event, potentially obscuring rapid fluctuations in blink activity. In
contrast, our model treats each blink individually, ensuring that even closely spaced
blinks are separately identified. This is critical for research contexts where precise
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temporal resolution is required, such as in studies with high-speed visual stimuli (e.g.,
presented in 10 ms intervals). In such cases, blink merging may artificially reduce
the number of detected events, leading to potential information loss in time-sensitive
experiments. By maintaining blink independence, our model ensures that each eyelid
closure is recorded as a distinct event, thereby preserving the integrity of temporal
analyses without artificially modifying blink counts.

Additionally, the model is designed to handle challenging cases, such as blinks
occurring at the start or end of the recording without misclassification. Instead of
enforcing artificial constraints on boundary cases, the method detects blinks based
solely on the pupil size signal, ensuring consistency across different experimental
conditions.

Finally, the model is computationally efficient, leveraging lightweight operations
such as forward differencing and Gaussian smoothing to achieve accurate blink
detection with minimal processing overhead. This efficiency makes it suitable for
high-throughput applications and real-time or near-real-time pupillometry studies. By
balancing detection accuracy with computational efficiency, the proposed method pro-
vides a scalable solution for both laboratory research and applied settings where blink
monitoring is critical.

3 Discussion

This study introduces a novel blink detection model that overcomes the limitations of
existing pupillometry approaches. The model significantly improves robustness, preci-
sion, and adaptability by integrating dynamic thresholding, Gaussian smoothing, and
a trend-based onset/offset refinement. Such improvements render it a powerful ana-
lytical tool, particularly in real-world contexts where noise, pupil size variability, and
complex edge cases impede the accuracy of conventional methods.

A key contribution of this model lies in its ability to generalize across heterogeneous
datasets. Rather than relying on fixed thresholds or device-specific noise profiles, the
dynamic thresholding mechanism of the model adaptively aligns with the intrinsic
characteristics of the data, ensuring reliable detection of both subtle and pronounced
blink events. This adaptability, combined with the model’s a trend-based refinement,
reduces false positives and enhances the physiological validity of detected blinks.

The incorporation of Gaussian smoothing constitutes a critical preprocessing step,
effectively minimizing noise while preserving the underlying structure of the pupil size
signal. This approach sharpens the distinction between authentic blinks and spuri-
ous artifacts in datasets characterized by high-frequency fluctuations. By leveraging
adjustable parameters such as threshold ratio and smoothing window size, the model
can be fine-tuned to meet various experimental demands, extending its utility to
cognitive neuroscience, fatigue assessment, and clinical diagnostics.

Unlike some alternative approaches that merge closely spaced blinks into a single
event, this model treats each detected blink individually. This is particularly important
for research contexts where blink frequency, inter-blink intervals, or temporal dynamics
are of interest. By maintaining blink independence, the model ensures that each closure
is recorded as a discrete event, preserving the integrity of temporal analyses without
artificial modifications to blink counts.
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Additionally, the model is designed to handle challenging cases such as blinks
occurring at the start or end of the recording without misclassification. Rather than
enforcing artificial constraints on boundary cases, the method detects blinks based
solely on the pupil size signal, ensuring consistency across different experimental
conditions.

Despite these advances, certain limitations remain. Although beneficial for flexi-
bility, the dependence of the model on user-defined parameters, such as the threshold
ratio and smoothing window size, necessitates careful selection based on the specific
dataset characteristics. Future work could explore adaptive thresholding techniques
that automatically adjust based on signal properties, further enhancing robustness
across diverse experimental contexts. Additionally, while Gaussian smoothing has
demonstrated strong noise-reduction capabilities, investigating alternative smooth-
ing techniques may further optimize performance in datasets exhibiting extreme
variability.

While this method improves robustness over static thresholding approaches, it still
requires manual selection of parameters such as the threshold ratio k and smooth-
ing window size. Future work could explore data-driven adaptive parameter selection
methods to further enhance robustness across diverse datasets. Additionally, while
Gaussian smoothing improves onset/offset accuracy, alternative signal processing tech-
niques, such as wavelet-based denoising or machine-learning-based segmentation, may
provide further refinements in detecting complex blink dynamics.

In conclusion, this work presents a robust and adaptable model that transcends
the limitations of traditional blink detection methods. The model provides a reli-
able and efficient solution for analyzing eye-tracking data across numerous research
domains by incorporating dynamic thresholding, Gaussian smoothing, and trend-based
refinements. Its resilience to real-world challenges and computational efficiency make
it valuable for diverse scientific investigations. As parameter optimization strategies
evolve and further validations against diverse datasets unfold, the utility of this model
will continue to expand, shaping the future of pupillometry and related fields.

Supplementary information. The Python code used for data analysis and visu-
alization, including the implementation of the current model and associated plotting
functions, is freely available at (https://osf.io/bgqwv) as a single function code, which
implies the model is available at (https://osf.io/689xd). In addition, the code for the
plotting steps is available at (https://osf.io/gy9b7).
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Appendix A Why Dynamic Threshold

Dynamic thresholding, or calibrating the detection cutoff according to the statistical
properties of the dataset, offers a more resilient alternative to fixed thresholding in
pupillometry because it accounts for natural fluctuations in baseline pupil size and
measurement conditions [42, 43]. Instead of applying an absolute threshold that may
fail when faced with inter-individual differences [44, 45] or alterations in lighting and
equipment, dynamic thresholding continuously adapts to the overall pupil size distri-
bution of each data set by referencing the mean or median of valid samples [42, 43, 46].
This approach ensures that even moderate drops in pupil size, which may indicate
partial eyelid closure or incomplete blinks, are adequately detected without overes-
timating noise-related artifacts. Researchers such as Hershman et al. [22] emphasize
the need to consider data- and device-specific noise characteristics and caution that
static thresholds often overlook subtle details in real-world settings. Kret and Sjak-
Shie [36] highlight the importance of normalization and adaptive parameterization
when identifying blinks, noting that extreme uniformity in thresholding criteria can
lead to inconsistencies between participants and instruments. Sirois and Brisson [29]
also underscore the benefits of adaptive approaches that scale with the data rather
than imposing rigid cut-offs because pupil size measurements inherently vary across
time [20], tasks [47] , and individuals [48, 49]. By tuning the threshold to the central
tendencies of each data set, the method remains sensitive to blink-related fluctua-
tions while reducing false detections arising from measurement artifacts or transient
changes in gaze.

Appendix B Gaussian smoothing

Gaussian smoothing mitigates high-frequency fluctuations and measurement artifacts
[50, 51] in the pupil size signal by applying a convolution filter with a Gaussian ker-
nel. This filter weights data points within a local window, giving more influence to
central values, thereby producing a smooth curve with reduced abrupt jumps [52–55].
This process helps preserve essential low-frequency features likely to reflect genuine
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physiological changes, such as the transitions between blink and non-blink intervals,
while attenuating random noise arising from device precision limits, participant micro-
movements, or environmental factors. By smoothing out rapid spikes or dips in pupil
size that do not represent actual events, the technique improves the reliability of onset
and offset detection in blink analysis, allowing the subsequent detection algorithm
to base its decisions on more stable patterns in the data. The preserved structural
integrity of the underlying signal is fundamental in pupillometry, where slight vari-
ations can indicate nuanced cognitive or physiological states and where the risk of
mistaking these variations for actual blinks is heightened if the raw signal contains
too much noise.

Appendix C Flexible boundary refinement

The model refines detected blink onsets and offsets by leveraging a trends in the
smoothed pupil signal. Instead of relying on strict threshold-based cutoffs, the
approach shifts blink boundaries to ensure they align with stable transitions in the
smoothed data. This refinement step helps mitigate noise-driven errors and prevents
premature or delayed marking of blink events.

For an initially detected onset trawonset, the refined onset tonset is determined by
scanning backward in time until a stabilization point is reached, ensuring the onset
aligns with the minimum pupil size before the blink event:

tonset = arg min
t≤trawonset

Psmooth(t). (C1)

Similarly, the refined offset toffset is determined by searching forward in the
smoothed signal until a stabilization point is reached, ensuring it aligns with the
maximum pupil size after the blink event:

toffset = arg max
t≥trawoffset

Psmooth(t). (C2)

By dynamically adjusting blink boundaries based on the smoothed signal, this
approach reduces the risk of misclassification caused by transient noise or abrupt
signal fluctuations. Unlike static methods, which may set arbitrary fixed thresholds
for refinement, this adaptive technique allows for better physiological alignment with
real blink events.

Appendix D Selecting threshold ratio

Logic Behind Using a Fraction k of the Mean Pupil Size:
The decision to define a blink detection threshold T as a fraction k of the mean

pupil size is based on the need for a relative data-driven criterion that adapts to varying
conditions and individual differences in the size of the baseline pupil. Rather than
relying on a fixed absolute value, this approach ensures that the threshold scales with
the intrinsic characteristics of the dataset. The following are the key points behind
this logic.
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Different participants and experimental conditions can influence the baseline pupil
sizes [47–49]. For instance, one participant may have a naturally larger pupil or lighting
conditions may shift the average pupil diameter. Using a single absolute threshold
for all datasets and conditions may lead to misclassification, as what constitutes a
blink-level drop in one dataset might not apply to another.

By setting T as a fraction of the mean pupil size, the threshold dynamically scales
with individual pupil size variations. This ensures that larger baseline pupils require
a proportionally higher drop for blink detection, while smaller baseline pupils require
a lower drop. Selecting k within this range is informed by practical considerations
[29, 36]. Typically, blink events manifest as significant reductions in pupil size [56],
often close to zero. However, measurement noise or partial closure of the eyelid may
produce values that are not strictly zero, but still represent a pronounced drop [57, 58].
In which A lower k (e.g., 0.2) is more lenient, capturing subtle drops and ensuring
greater sensitivity to slight decreases in pupil size, and a higher k (e.g., 0.5) is stricter,
requiring more substantial decreases in pupil size for detection, thus reducing false
positives. Adjusting k provides a means to fine-tune the sensitivity and specificity of
blink detection. A threshold ratio within 0.2–0.5 often serves as a balanced starting
point, offering broad applicability while allowing for experiment-specific refinements
[59].

While there is no universally fixed threshold ratio, using a fraction of the mean
pupil size has emerged from empirical observations and discussions in pupillometry.
Researchers have consistently observed substantial variability between participants,
conditions, and measurement devices. Consequently, they have advocated for data-
driven techniques that derive thresholds from the dataset’s distribution of pupil sizes
rather than imposing absolute criteria.

In other words, this range is neither too restrictive nor too permissive, accom-
modating subtle blink-related drops without over-flagging minor fluctuations. Such
empirical insights have guided practitioners toward using a relative threshold that
harnesses the inherent characteristics of the data, making the blink detection process
both more robust and more tailored to the specifics of each dataset.
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[17] Grootjen, J.W., Weingärtner, H., Mayer, S.: Uncovering and addressing blink-
related challenges in using eye tracking for interactive systems. Proceedings of
the CHI Conference on Human Factors in Computing Systems (2024) https://
doi.org/10.1145/3613904.3642086

[18] Culemann, W., Neuber, L., Heine, A.: Pupil vs. eyelid: Evaluating the accuracy
of blink detection in pupil-based eye tracking devices. Procedia Computer Science
225, 2008–2017 (2023) https://doi.org/10.1016/j.procs.2023.10.191

[19] Appel, T., Santini, T., Kasneci, E.: Brightness- and motion-based blink detection
for head-mounted eye trackers. In: Proceedings of the 2016 ACM International
Joint Conference on Pervasive and Ubiquitous Computing: Adjunct. UbiComp
’16, pp. 1726–1735. ACM, ??? (2016). https://doi.org/10.1145/2968219.2968341
. http://dx.doi.org/10.1145/2968219.2968341

[20] Choe, K.W., Blake, R., Lee, S.-H.: Pupil size dynamics during fixation impact
the accuracy and precision of video-based gaze estimation. Vision Research 118,
48–59 (2016) https://doi.org/10.1016/j.visres.2014.12.018

[21] Cho, J.M., Lee, S.J., Kirn, J.K., Choi, H.H., Kwon, O.S., Kwon, J.W.: A pupil cen-
ter detection algorithms for partially-covered eye image. In: 2004 IEEE Region 10
Conference TENCON 2004., pp. 183–1861. IEEE, ??? (2004). https://doi.org/10.
1109/tencon.2004.1414387 . http://dx.doi.org/10.1109/TENCON.2004.1414387

[22] Hershman, R., Henik, A., Cohen, N.: A novel blink detection method based on
pupillometry noise. Behavior Research Methods 50, 107–114 (2018) https://doi.
org/10.3758/s13428-017-1008-1

[23] Pedrotti, M., Lei, S., Dzaack, J., Rötting, M.: A data-driven algorithm for offline
pupil signal preprocessing and eyeblink detection in low-speed eye-tracking pro-
tocols. Behavior Research Methods 43, 372–383 (2011) https://doi.org/10.3758/
s13428-010-0055-7

[24] Cho, Y.: Rethinking eye-blink: Assessing task difficulty through physiological rep-
resentation of spontaneous blinking. Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems (2021) https://doi.org/10.1145/3411764.
3445577

[25] Weiskrantz, L.: Differential pupillary constriction and awareness in the absence
of striate cortex. Brain 122(8), 1533–1538 (1999) https://doi.org/10.1093/brain/

16

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 23, 2025. ; https://doi.org/10.1101/2025.04.21.649751doi: bioRxiv preprint 

https://doi.org/10.3758/s13428-023-02333-9
https://doi.org/10.3758/s13428-023-02333-9
https://doi.org/10.1145/3588015.3589202
https://doi.org/10.1145/3588015.3589202
https://doi.org/10.1145/3613904.3642086
https://doi.org/10.1145/3613904.3642086
https://doi.org/10.1016/j.procs.2023.10.191
https://doi.org/10.1145/2968219.2968341
http://dx.doi.org/10.1145/2968219.2968341
https://doi.org/10.1016/j.visres.2014.12.018
https://doi.org/10.1109/tencon.2004.1414387
https://doi.org/10.1109/tencon.2004.1414387
http://dx.doi.org/10.1109/TENCON.2004.1414387
https://doi.org/10.3758/s13428-017-1008-1
https://doi.org/10.3758/s13428-017-1008-1
https://doi.org/10.3758/s13428-010-0055-7
https://doi.org/10.3758/s13428-010-0055-7
https://doi.org/10.1145/3411764.3445577
https://doi.org/10.1145/3411764.3445577
https://doi.org/10.1093/brain/122.8.1533
https://doi.org/10.1093/brain/122.8.1533
https://doi.org/10.1101/2025.04.21.649751
http://creativecommons.org/licenses/by-nc/4.0/


122.8.1533

[26] Szibbo, D., Luo, A., Sullivan, T.J.: Removal of blink artifacts in single channel eeg.
In: 2012 Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, pp. 3511–3514. IEEE, ??? (2012). https://doi.org/10.1109/
embc.2012.6346723 . http://dx.doi.org/10.1109/EMBC.2012.6346723

[27] Nakano, T., Yamamoto, Y., Kitajo, K., Takahashi, T., Kitazawa, S.: Synchro-
nization of spontaneous eyeblinks while viewing video stories. Proceedings of
the Royal Society B: Biological Sciences 276(1673), 3635–3644 (2009) https:
//doi.org/10.1098/rspb.2009.0828

[28] Fogarty, C., Stern, J.A.: Eye movements and blinks: their relationship to higher
cognitive processes. International Journal of Psychophysiology 8(1), 35–42 (1989)
https://doi.org/10.1016/0167-8760(89)90017-2

[29] Sirois, S., Jackson, I.R.: Pupil dilation and object permanence in infants. Infancy
17(1), 61–78 (2011) https://doi.org/10.1111/j.1532-7078.2011.00096.x

[30] Gao, J., Lin, P., Yang, Y., Wang, P.: Automatic removal of eye-blink artifacts
based on ica and peak detection algorithm. In: 2010 2nd International Asia Con-
ference on Informatics in Control, Automation and Robotics (CAR 2010), vol. 1,
pp. 22–27 (2010). IEEE

[31] Pedrotti, M., Lei, S., Dzaack, J., Rötting, M.: A data-driven algorithm for offline
pupil signal preprocessing and eyeblink detection in low-speed eye-tracking proto-
cols. Behavior Research Methods 43(2), 372–383 (2011) https://doi.org/10.3758/
s13428-010-0055-7
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