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Motivation
Current visual attention models inadequately [1]
handle the routing problem in hierarchical processing,
fail to maintain spatial precision across levels, strug-
gle to separate overlapping neural activations [2], and
fail to adequately model contextual influences [3].

Key Limitations
Classical saliency and deep attention models often (i) lack
principled routing in hierarchies, (ii) lose spatial precision
as receptive fields grow, (iii) suffer cross–talk under clutter,
and (iv) treat context heuristically without guarantees.
extcolorred.

Proposed Solution
HARS offers dynamic, activity-dependent routing across
levels with context-aware normalization and edge-preserv-
ing refinement, maintaining spatial precision, reducing
cross-talk, and enabling multiple foci in a tractable,
testable pipeline.

Multi-Scale Feature Extraction
For an input image 𝐼(𝑥, 𝑦), we compute a set of feature maps

𝐹𝑖,𝑠(𝑥, 𝑦) = Φ𝑖(𝐼(𝑥, 𝑦), 𝑠)
𝐹𝑖,𝑠(𝑥, 𝑦) =∑

𝑢,𝑣
𝐼(𝑥 − 𝑢, 𝑦 − 𝑣) ⋅ 𝐾𝑖(𝑢, 𝑣, 𝑠)

𝐾𝑖(𝑢, 𝑣, 𝑠, 𝑡) = 𝐾0
𝑖 (𝑢, 𝑣, 𝑠) ⋅ 𝐴𝑖(𝑢, 𝑣, 𝑠, 𝑡)

𝐴𝑖(𝑢, 𝑣, 𝑠, 𝑡) =
1

1 + 𝛼𝑖 ⋅ ∫
𝑡
𝑡−𝜏 |𝐹𝑖,𝑠(𝑢, 𝑣, 𝑡′)| 𝑑𝑡′

where Φ𝑖 represents the operator for feature type 𝑖 (such as intensity, color opponency,
orientation, motion, etc.) at scale 𝑠, and 𝐾𝑖(𝑢, 𝑣, 𝑠) is the kernel for feature type 𝑖 at
scale 𝑠.

Contextual Integration and Normalization
To address the context problem identified by Tsotsos, we introduce an explicit contextual
normalization mechanism

̂𝐹𝑖,𝑠(𝑥, 𝑦) =
𝐹𝑖,𝑠(𝑥, 𝑦) − 𝜇𝑖,𝑠(𝑥, 𝑦, 𝜔)

𝜎𝑖,𝑠(𝑥, 𝑦, 𝜔) + 𝜖
where 𝜇𝑖,𝑠(𝑥, 𝑦, 𝜔) and 𝜎𝑖,𝑠(𝑥, 𝑦, 𝜔) represent the mean and standard deviation in a
spatial neighborhood 𝜔 around position (𝑥, 𝑦), and contextual is refined by statistics of
the image

𝐹𝑖,𝑠(𝑥, 𝑦) = 𝐹𝑖,𝑠(𝑥, 𝑦) ⋅ (1 + 𝛽𝑖 ⋅
|𝐹𝑖,𝑠(𝑥, 𝑦) − 𝜇𝑔𝑙𝑜𝑏𝑎𝑙𝑖,𝑠 |

𝜎𝑔𝑙𝑜𝑏𝑎𝑙𝑖,𝑠
),

where 𝜇𝑔𝑙𝑜𝑏𝑎𝑙𝑖,𝑠 and 𝜎𝑔𝑙𝑜𝑏𝑎𝑙𝑖,𝑠 are the global mean and standard deviation for feature type 𝑖
at scale 𝑠, and 𝛽𝑖 is a parameter controlling the influence of global distinctiveness.

Temporal Integration and Prediction
To account for the temporal dynamics of visual attention, we incorporate a predictive
component that anticipates the future state of attended objects:

̂𝑆(𝑥, 𝑦, 𝑡 + Δ𝑡) = 𝑆(𝑥, 𝑦, 𝑡) + 𝜅 ⋅ 𝜕𝑆(𝑥, 𝑦, 𝑡)𝜕𝑡 ⋅ Δ𝑡 + 𝜉 ⋅ 𝑀(𝑥, 𝑦, 𝑡) ⋅ Δ𝑡,
where ̂𝑆 is the predicted saliency, 𝜕𝑆(𝑥,𝑦,𝑡)𝜕𝑡 represents the temporal derivative of saliency,
𝑀(𝑥, 𝑦, 𝑡) is a motion field extracted from the input, and 𝜅 and 𝜉 are parameters
controlling the influence of temporal change and motion respectively

Parameter Optimization and Model Adaptation
The HARS model contains numerous parameters that require proper tuning. Rather
than setting these parameters arbitrarily, we propose an optimization framework that
adjusts parameters based on human behavioral data

Θ∗ = argmin
Θ

𝑁𝑑𝑎𝑡𝑎
∑
𝑖=1
||𝐵ℎ𝑢𝑚𝑎𝑛(𝑖) − 𝐵𝑚𝑜𝑑𝑒𝑙(𝑖, Θ)||2,

whereΘ represents the full parameter set of the model, 𝐵ℎ𝑢𝑚𝑎𝑛(𝑖) are human behavioral
measurements (such as reaction times, detection rates, or eye movement patterns), and
𝐵𝑚𝑜𝑑𝑒𝑙(𝑖, Θ) are the corresponding model predictions with parameter set Θ.

Hierarchical Integration with Recurrent Connectivity
To address the routing problem, At each level 𝑙 of the hierarchy, feature maps are
progressively combined into more complex representations

𝐻𝑙(𝑥, 𝑦, 𝑡) =∑
𝑖,𝑠
𝑤𝑖,𝑠,𝑙(𝑡) ⋅ 𝑃𝑙−1,𝑙(𝐹𝑖,𝑠(𝑥, 𝑦, 𝑡)),

where 𝑃𝑙−1,𝑙 is a projection operator that maps features, and 𝑤𝑖,𝑠,𝑙(𝑡) are dynamic
weights that control the contribution of each feature type and scale to the higher-level
representation.

𝑤𝑖,𝑠,𝑙(𝑡) = 𝑤0𝑖,𝑠,𝑙 +Δ𝑤𝑏𝑢𝑖,𝑠,𝑙(𝑡) + Δ𝑤𝑡𝑑𝑖,𝑠,𝑙(𝑡),
The bottom-up weight adjustment Δ𝑤𝑏𝑢𝑖,𝑠,𝑙(𝑡) is computed based on the global informa-
tiveness of each feature map

Δ𝑤𝑏𝑢𝑖,𝑠,𝑙(𝑡) = 𝛾𝑏𝑢 ⋅
∑𝑥,𝑦 |𝐹𝑖,𝑠(𝑥, 𝑦, 𝑡)|

∑𝑖′,𝑠′∑𝑥,𝑦 |𝐹𝑖′,𝑠′(𝑥, 𝑦, 𝑡)|
,

top-down weight = Δ𝑤𝑡𝑑𝑖,𝑠,𝑙(𝑡) = 𝛾𝑡𝑑 ⋅
∑𝑥,𝑦 𝑇𝑖(𝑥, 𝑦, 𝑡) ⋅ 𝐻𝑙+1(𝑥′, 𝑦′, 𝑡 − 1)

∑𝑖′∑𝑥,𝑦 𝑇𝑖′(𝑥, 𝑦, 𝑡) ⋅ 𝐻𝑙+1(𝑥′, 𝑦′, 𝑡 − 1)
,

Selective Routing Mechanism
a selective routing mechanism that dynamically gates information flow through the
hierarchy

𝐺𝑙(𝑥, 𝑦, 𝑡) = 𝜎(
𝑆(𝑃0,𝑙(𝑥, 𝑦), 𝑡) − 𝜃𝑙(𝑡)

𝜏𝑙
) ,

where 𝐺𝑙 is a gating signal at level 𝑙, 𝜎 is the sigmoid function, 𝑃0,𝑙 maps input coor-
dinates to level 𝑙 coordinates, 𝜃𝑙(𝑡) is an adaptive threshold, and 𝜏𝑙 is a temperature
parameter controlling the sharpness of the gating.

IOR with Object-Based Properties
IOR mechanism that operates in both spatial and object-based coordinates

𝐼𝑂𝑅(𝑥, 𝑦, 𝑡) =
𝑁𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑑
∑
𝑖=1

exp(−||[𝑥, 𝑦] − [𝑥𝑖, 𝑦𝑖]||
2

2𝜎2𝑠𝑝𝑎𝑡𝑖𝑎𝑙
) ⋅ exp(−𝑡 − 𝑡𝑖𝜏𝐼𝑂𝑅

),

For object-based IOR, we extend this mechanism to include feature similarity:

𝐼𝑂𝑅𝑜𝑏𝑗(𝑥, 𝑦, 𝑡) = 𝐼𝑂𝑅(𝑥, 𝑦, 𝑡) ⋅
𝑁𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑑
∑
𝑖=1

exp(−||𝐹(𝑥, 𝑦, 𝑡) − 𝐹(𝑥𝑖, 𝑦𝑖, 𝑡𝑖)||
2

2𝜎2𝑓𝑒𝑎𝑡𝑢𝑟𝑒
),
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