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Abstract 

This paper presents a novel, physiologically inspired framework for reconstructing missing pupil 

data during blink-induced interruptions. Pupillometry has become integral to studies of cognition, 

emotion, and neural function, yet the frequent data gaps caused by blinks can compromise the 

accuracy of inferences drawn from pupil measurements. This approach addresses these challenges 

by introducing an exponential recovery model that dynamically adjusts its time constant in 

proportion to blink duration, thus capturing the non-linear dynamics of pupil responses more 

effectively than traditional interpolation methods. A localised noise estimation procedure further 

enhances realism by incorporating both signal-dependent and baseline noise derived from 

statistical properties of the data surrounding each blink. Additionally, a Savitzky–Golay filter is 

selectively applied to the reconstructed intervals, preserving key physiological features while 

mitigating high-frequency artefacts. To facilitate the implementation of our framework, we 

introduce PRPIP, a Python package that implements our methodology. This work demonstrates 

the effectiveness of this method using empirical pupil data from visual tasks, illustrating that the 

reconstructed signals maintain physiological fidelity across a range of blink durations. These 

findings underscore the potential of combining physiological principles with data-driven noise 

modelling to generate robust, continuous pupil traces. By offering a more accurate reconstruction 

of pupil size, this framework stands to advance pupillometric research in fields ranging from 

cognitive psychology to clinical neuroscience. 

Introduction 

The pupillometry reveals a complex interplay between physiological mechanisms and 

cognitive processes 1 , extending well beyond the pupil's primary function of regulating light entry 

into the retina. As a central feature of the human eye 2,3, the pupil adjusts its size to control the 

amount of light that reaches the retina in response to both environmental 4 and cognitive stimuli 
5. However, the pupil's significance goes far beyond its fundamental role in vision; it has emerged 

as a valuable marker in neuroscience and psychology 2,6–8, providing insights into cognitive 

processes 7, emotional states 9, and various neurological conditions 2. 

Pupil size indicates autonomic nervous system activity 10, reflecting the interplay between 

sympathetic and parasympathetic pathways 11. The dynamics of pupil size are frequently utilised 

to investigate states of arousal 12, attentional focus 13–15, and the decision-making process. 

Specifically, pupillary responses show characteristic patterns of constriction and dilation that 

follow physiologically based exponential recovery curves, reflecting underlying smooth muscle 

activity. These complex dynamics give researchers a valuable, non-invasive perspective on 

intricate cognitive and physiological phenomena. Consequently, precise pupil size measurement 

has become an essential tool for scholars in various disciplines. 

Modern eye-tracking technologies have transformed our ability to capture and analyse 

pupillometric responses accurately. These technologies are essential for recording task-evoked 

changes in pupil diameter in real-time, facilitating the investigation of pupil dynamics across 

various experimental paradigms. The raw pupillary data collected by eye-tracking devices reflect 
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the physical size of the pupil 16, which is typically pre-processed into a standardised format for 

analysis 17. Following data acquisition, rigorous preprocessing becomes essential to extract 

meaningful and reliable insights from the raw pupillary signals. 

The preprocessing pipeline typically involves filtering to eliminate artefacts and noise, 

smoothing valid samples, and applying baseline corrections. However, the seemingly 

straightforward task of measuring pupil size is accompanied by complex methodological challenges 

(for a comprehensive review, see Palegatti et al, (2024) 18). Despite these preprocessing efforts, 

eye-tracking data often faces interruptions from factors such as blinks, head movements, and 

system noise, leading to gaps, or "pupil loss," in the pupil measuring time series 16,19. This 

highlights the critical importance of advanced reconstruction techniques to maintain data 

continuity and reliability. The integrity of pupillometric data is paramount for drawing valid 

scientific conclusions about underlying cognitive and physiological processes. 

Recovering missing pupil data poses a significant methodological challenge that demands 

advanced scientific approaches. This reconstruction is vital because pupil signals exhibit 

continuity over time. Pupil dynamics typically evolve gradually over hundreds of milliseconds to 

seconds, influenced by the smooth muscle activity responsible for dilation and constriction 20. 

Overlaying these slow variations are subtle, rapid fluctuations resulting from fine-grained muscle 

activity or measurement noise 21. 

Numerous models have been developed to reconstruct missing pupil data to address the 

associated challenges. Basic methods, such as linear interpolation 22, offer a straightforward 

solution for bridging small gaps; however, they often fail to capture the complexities of pupil 

dynamics, particularly during extended interruptions. Spline-based techniques, including cubic 23 

and Akima splines 24, yield smoother reconstructions but may introduce artefacts, such as 

overshooting, especially at the edges of blink intervals. More sophisticated computational 

approaches, particularly machine learning techniques 25, have emerged as promising alternatives. 

Nevertheless, these approaches frequently struggle to preserve the intrinsic physiological 

characteristics of pupil dynamics 26–28. Current reconstruction methods often rely on fixed 

parameters that fail to adapt to varying blink durations 29–31, create arbitrary thresholds between 

different techniques 26, and produce unrealistically smooth signals 17 that lack the natural 

variability inherent in physiological data. Additionally, many methods fail to capture the 

inherently exponential nature of pupillary recovery processes 32–34,34,35. 

Given these methodological challenges in pupil data reconstruction, this study introduces 

a novel exponential recovery model that addresses key limitations of existing approaches. the 

model incorporates dynamic time constant adjustment based on blink duration, unified 

reconstruction mechanisms across all gap lengths, and physiologically realistic noise 

characteristics. By combining theoretical insights from pupillary dynamics with practical 

computational considerations, this work aims to develop a reconstruction method that preserves 

the intrinsic temporal and physiological characteristics of pupil signals while maintaining 

computational efficiency. This approach balances biological plausibility and practical 

implementation for pupillometric research across diverse experimental paradigms. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2025. ; https://doi.org/10.1101/2025.08.18.670842doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.18.670842
http://creativecommons.org/licenses/by/4.0/


The current model is derived from principles in physiology, psychology, and computational 

modelling of pupil dynamics. It builds upon the exponential recovery behaviour of the pupil, a 

phenomenon characterised by rapid initial constriction followed by a gradual return to baseline 
26. This behaviour is mathematically represented through an exponential recovery function, 

capturing the non-linear dynamics observed in empirical studies 6,20,36. These exponential models 

are widely supported by empirical pupillometry research, as they accurately represent the non-

linear return to baseline following blink events. The model further incorporates a dynamic 

adjustment of the recovery time constant Tau (𝜏), which adapts to the duration of the blink. This 

adjustment reflects the biological reality that longer blinks demand slower recovery processes, 

while shorter disruptions recover more rapidly, aligning with theoretical insights into physiological 

variability 21. 

Additionally, incorporating Gaussian noise, aligned to the study by 37 and studies like 37–

43, scaled to the recovery magnitude, mirrors the natural variability inherent in pupillary 

responses. The model ensures compatibility with observed data by accounting for signal-dependent 

and independent noise components, enhancing its realism 44–46. The unified approach used in this 

model applies a single recovery mechanism regardless of blink duration, avoids arbitrary 

thresholds, and reflects the continuity of underlying physiological processes. Together, these 

elements demonstrate the model's firm grounding in theoretical principles while maintaining 

practical applicability to experimental contexts 47,48. 

A locality-based approach to noise estimation further enhances the current model. Rather 

than applying uniform noise parameters across all reconstructed segments, the model evaluates 

local statistical properties of the pupil signal surrounding each blink event. This localised 

estimation captures the temporal variability in pupil dynamics that may change throughout an 

experimental session due to factors such as fatigue, arousal fluctuations, or measurement 

conditions. By computing the ratio between the local standard deviation and range of the pupil 

signal within windows surrounding individual blinks, the model derives a noise scale parameter 

that adaptively reflects the signal's inherent variability. This approach acknowledges that 

physiological systems exhibit non-stationary behaviour, with noise characteristics that may evolve 

over time rather than remain constant throughout a recording session 17,28. 

Additionally, the model incorporates targeted signal processing through the application of 

a Savitzky-Golay filter exclusively to the reconstructed blink segments. Unlike global smoothing 

approaches that may over-attenuate meaningful physiological fluctuations, this selective filtering 

preserves the natural dynamics of the recorded signal while removing reconstruction artefacts. 

The Savitzky-Golay filter, with its polynomial fitting approach, maintains critical signal features 

such as peaks and valleys while effectively reducing high-frequency noise 49,50. This targeted 

filtering strategy strikes a balance between signal fidelity and noise reduction, ensuring that the 

reconstructed segments integrate seamlessly with the surrounding recorded data. By combining 

locality-based noise estimation with selective polynomial smoothing, the model produces 

reconstructed pupil signals that maintain both the statistical properties and physiological 

characteristics of the original data, facilitating more reliable inferences in pupillometric research. 
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Methodology 

Research has demonstrated that the pupil's response to light and subsequent recovery 

follows an exponential decay pattern 32,51. This behaviour, characterised by a rapid initial change 

followed by a gradual return to baseline, has been further supported by recent evaluations of 

pupillary light response models 47,52,53. Exponential models have been shown to perform 

comparably to linear models regarding predictive accuracy while better capturing the inherent 

nonlinear dynamics under varying light conditions 54–56. The main formula to reconstruct the pupil 

during the recovery phase following a blink is defined by 

𝑃(𝑡) = 𝑃pre + (𝑃post − 𝑃pre) (1 − 𝑒−𝑡
𝜏), 

where 𝑃 (𝑡) denotes the reconstructed pupil size at time 𝑡, 𝑃pre is the pupil size immediately 

before the blink, 𝑃post is the pupil size immediately after the blink, and 𝑡 represents the elapsed 

time during the blink. In our implementation, which is based on measurements in milliseconds, 

the effective recovery time constant 𝜏 is dynamically adjusted according to the blink duration. 

Specifically, we define 

𝜏 = 𝜏base +
𝑡blink

10
, 

where 𝜏base represents the inherent recovery speed of the pupil and 𝑡blink is the blink duration. The 

factor 10 is chosen such that each additional 10 ms of blink time increases 𝜏 by 1 unit, a scaling 

that has been empirically validated to yield physiologically realistic recovery curves. For short 

blink durations, the effective time constant remains close to 𝜏base, whereas for longer blinks, the 

recovery is proportionally slowed. 

To facilitate parameter estimation from experimental data, the pupil size is recorded at 

various time points 𝑡𝑖 during the recovery phase, yielding corresponding measurements 𝑃𝑖. To 

simplify the fitting process, the data is normalised by defining 

𝑦𝑖 =
𝑃𝑖 − 𝑃pre

𝑃post − 𝑃pre

, 

which transforms the model into 

𝑦𝑖 = 1 − 𝑒
−

𝑡𝑖
𝜏base 

By rearranging this expression as 

𝑒
−

𝑡𝑖
𝜏base = 1 − 𝑦𝑖, 

and taking the natural logarithm, we obtain 

−
𝑡𝑖

𝜏base

= ln(1 − 𝑦𝑖), 

from which an individual estimate of the baseline recovery time constant can be derived as 
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𝜏
base

(𝑖)
= −

𝑡𝑖
ln(1 − 𝑦𝑖)

 

A reliable estimate  𝜏base is then obtained by averaging these individual estimates or by solving 

the least-squares optimisation problem 

min
𝜏base

∑[𝑦𝑖 − (1 − 𝑒
−

𝑡𝑖
𝜏base)]

2𝑛

𝑖=1

 

To account for natural physiological variability and measurement uncertainty, the model 

incorporates a noise component that consists of both signal-dependent and signal-independent 

elements 57–59. The signal-dependent noise variance is modelled by first defining 

Δ = |𝑃post − 𝑃pre|, 

Which represents the magnitude of the change in pupil size. The signal-dependent noise variance 

is then given by 

𝜎signal
2 = 𝑘 ⋅Δ 

where 𝑘 is a proportionality constant that represents the slope of the linear relationship between 

the noise variance and the magnitude of the pupil change. When combined with a signal-

independent baseline noise variance 𝜎0
2, the total noise variance is expressed as 

𝜎total
2 = 𝜎0

2 + 𝑘 ⋅Δ 

and the overall noise standard deviation becomes 

𝜎total = √𝜎0
2 + 𝑘 ⋅Δ 

The final reconstructed pupil signal is obtained by adding a Gaussian noise term to the 

deterministic recovery function 60–62, leading to 

𝑃noisy(𝑡) = 𝑃(𝑡) + 𝜖 

with 

𝜖 ∼ 𝒩(0, 𝜎total
2 ) 

Here, 𝜖 represents the Gaussian noise that captures both the inherent physiological variability and 

the measurement uncertainty, ensuring that the reconstructed pupil data exhibits realistic 

fluctuations. 

In this implementation, the local noise scale 𝑘 is computed by analysing segments of the pupil 

data immediately surrounding each detected blink event. For each blink, the model defines a local 

window extending a fixed number of samples 𝑊 before the blink onset and after the blink offset. 

Within this window, the model computes the rolling standard deviation, denoted as 𝜎local, and the 

rolling range 𝑅local, which is defined as the difference between the maximum and minimum pupil 
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sizes in that window. Mathematically, for a window 𝑊centred at time 𝑡, these quantities are given 

by 

𝜎local(𝑡) = std{𝑃(𝑡 − 𝑊/2),… , 𝑃 (𝑡 + 𝑊/2)}, 

𝑅local(𝑡) = max{𝑃(𝑡 − 𝑊/2),… , 𝑃(𝑡 + 𝑊/2)} − min{𝑃(𝑡 − 𝑊/2),… ,𝑃 (𝑡 + 𝑊/2)}. 

The local noise scale for that blink is then estimated as the ratio 

𝑘local =
𝜎local

𝑅local

 

The overall noise scale 𝑘 used in the reconstruction is obtained as the median of these local 

estimates across all detected blink events, i.e., 

𝑘 = median{𝑘
local

(1)
, 𝑘

local

(2)
,… , 𝑘

local

(𝑛)
}. 

Additionally, a Savitzky–Golay filter 49,50 is applied exclusively to the reconstructed segments 

corresponding to blink intervals to address any irregular artefacts in the reconstructed pupil signal. 

The Savitzky–Golay filter fits local polynomials 63–65 to the data within a moving window; the 

smoothed value 𝑃̂ (𝑡) is computed as 

𝑃̂ (𝑡) = ∑ 𝑐𝑖

𝑚

𝑖=−𝑚

 𝑃 (𝑡 + 𝑖), 

where 2𝑚 + 1 is the window length, and the coefficients 𝑐𝑖 are determined by fitting a polynomial 

of a specified order to the data within the window. This filtering process effectively reduces high-

frequency noise while preserving the pupil response's overall shape and important transitions. 

By employing an exponential recovery function with a dynamically adjusted recovery time 

constant, a derived noise model based on the data's local variability, and a targeted smoothing 

filter for the blink intervals, our approach offers a robust and physiologically grounded method 

for reconstructing pupil dynamics during blink-induced interruptions. 

Two examples of the method and testing the Model 

To evaluate the performance of our proposed reconstruction method, we conducted tests 

using two distinct examples. Data were recorded during a visual task employing an EyeLink Eye-

tracker 1000 Plus Tower setup (SR-Research) with a sample rate of 1000 Hz. Participants were 

stabilised with a chin rest, and visual stimuli were presented on a monitor with a resolution of 

2560×1140 pixels and a refresh rate of 240 Hz. The recordings were performed in a controlled, 

dim environment, with the participant positioned 57 cm away from the screen, and only the right 

eye was recorded.  The EDF file was converted to CSV format using the etformat package 66, then 

blink was detected by the model provided by Khodami (2025) 67 with all analyses conducted in a 

Python environment. 

Trial 1 lasted for a total duration of 6487 milliseconds. Blink detection algorithms 

identified three distinct blink events, with onsets at 1621, 2508, and 4677 milliseconds and 
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corresponding offsets at 1844, 4517, and 5437 milliseconds. For each blink, a local segment was 

defined to capture the pupil data surrounding the blink interval. In the first blink, the local 

segment extended from index 1571 to 1894, and the computed local noise scale was 0.3020. For 

the second blink, the segment ranged from index 2458 to 4567, yielding a noise scale of about 

0.3824, while the third blink, with a segment spanning from index 4627 to 5487, produced a noise 

scale of approximately 0.3011. The overall average local noise scale, determined as the median of 

the individual values, was computed to be 0.3020. Subsequently, a Savitzky–Golay filter with a 

window was applied to each blink segment to smooth the reconstructed signal. Figure 1 shows the 

result and plot of this process. 

 

Figure 1. Example of reconstruction using the model. The duration of the total trial is 6847 ms, 

where we identified 3 blinks at onsets of 1621, 2508, and 4667 and offsets of 1844, 4517, and 5437. 

After applying the model, the local noise for blinks in order was 0.3019, 0.3823, and 0.3011 and 

the average local noise of 0.3019 was also computed, and this local noise was applied to reconstruct 

pupil size. Filter was applied with the window length of 50  

Trial 2 had a total duration of 4103 milliseconds. Identified with two blink events, with 

onsets at 1501 and 2808 milliseconds and corresponding offsets at 2420 and 3672 milliseconds. 

Each blink was analysed within a localised segment to ensure accurate reconstruction. The first 

blink, spanning the segment from index 1451 to 2470, exhibited a computed local noise scale of 

approximately 0.3108. The second blink, analysed within the segment ranging from index 2758 to 

3722, had a local noise scale of 0.3018. The average local noise scale, determined as the median of 

the individual estimates, was computed to be 0.3063. A Savitzky–Golay filter was applied on 

segments with a window length of 50. 
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Figure 2. Example of reconstruction using the model, the duration of the total trial is 4103 ms, 

where we identified 2 blinks at onsets of 1501 and 2420 and offsets of 2808 and 3672, respectively, 

considering the start of the trial as 0. After applying the model, the local noise for blinks in order 

was 0.3108 for both and the average local noise of 0.3063, as well as the computed local noise, was 

applied to reconstruct pupil size. 

Advantages of the Model 

The current model offers several advantages over existing methods for reconstructing pupil 

size during blink intervals. First, compared to models that employ fixed recovery time constants 

𝜏, our approach dynamically adjusts 𝜏 based on the duration of the blink. This adaptation ensures 

that recovery curves accurately reflect the physiological reality of slower recoveries for longer 

blinks and faster recoveries for shorter blinks, taken the conclusion from 68,69. Fixed-𝜏 models often 

fail to capture this variability, leading to over-smoothing or abrupt transitions that deviate from 

the natural dynamics of pupil recovery 14,69. The dynamic adjustment of 𝜏 provides a 

physiologically plausible scaling that respects the nonlinear relationship between blink duration 

and recovery time. 

Second, our model employs an exponential recovery function for all blink durations, unlike 

many existing approaches that rely on piecewise strategies with distinct methods for short and 

long blinks. This design eliminates arbitrary thresholds, which can create inconsistencies and 

discontinuities in the reconstructed signal. By applying a single recovery mechanism, the model 

ensures seamless reconstruction consistent with the continuous nature of physiological processes. 

This unified approach also simplifies implementation and parameter tuning, as researchers need 

not determine separate algorithms or thresholds for different blink categories. 
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Third, the model incorporates Gaussian noise scaled to the recovery magnitude, enhancing 

realism by mimicking the natural variability observed in pupil size measurements, as research 

indicates that while Gaussian models are useful 70. This feature addresses the shortcomings of 

more straightforward interpolation-based methods that often yield overly smooth reconstructions, 

lacking the subtle fluctuations seen in empirical data 71,72. The reconstructed signal aligns closely 

with real-world observations by explicitly modelling noise dynamics 70,73, maintaining signal-

dependent and independent variability. Our approach to estimating the noise scale 𝑘 from local 

data segments surrounding each blink ensures that the noise characteristics are tailored to the 

specific recording conditions and individual differences in pupil variability, providing a more 

accurate representation than models using fixed noise parameters [for more detail, read Appendix 

A.] 

Fourth, the physiological validity of our model represents a significant strength. The 

exponential recovery curve captures the exponential nature of pupil response as described in 

experimental and theoretical studies 37,44,46. In contrast to polynomial-based methods, which are 

computationally simple but fail to replicate non-linear recovery dynamics 74,75, our model aligns 

with established findings on exponential decay. This ensures a biologically plausible recovery that 

bridges the gap between computational accuracy and physiological fidelity. The exponential 

model's ability to account for the characteristic rapid initial change followed by a gradual 

asymptotic approach to the post-blink pupil size is vital for accurately capturing the early phases 

of pupil recovery, which are often critical in cognitive and perceptual studies. 

Fifth, the robustness and simplicity of our implementation make it adaptable to a wide 

range of experimental paradigms. Unlike machine-learning-based approaches, which often require 

extensive training data and are constrained to specific tasks 25,76,77, our model generalises across 

diverse conditions involving varying blink characteristics, luminance levels, and noise profiles. 

This flexibility ensures that our approach is both practical and effective, enabling its application 

to cognitive and perceptual studies where accurate modelling of pupil dynamics is essential. The 

model's minimal parameter set—primarily 𝜏base, 𝑘, and 𝜎0—facilitates straightforward adaptation 

to different experimental conditions without the need for extensive retraining or recalibration. 

Sixth, our localised estimation of noise parameters provides a significant advantage over 

global estimation methods. By analysing segments of pupil data surrounding each blink event, our 

approach captures local variations in signal quality and physiological state that may affect the 

noise characteristics. This localisation allows for more accurate noise modelling compared to 

methods that apply a single noise parameter across the entire recording, which may fail to account 

for temporal variations in signal quality or physiological state (More at Appendix A). 

Seventh, the strategic application of the Savitzky-Golay filter exclusively to the 

reconstructed blink segments represents a targeted approach to smoothing that preserves the 

integrity of the original signal where it is valid. This selective filtering contrasts with methods 

that apply global smoothing, which may inadvertently distort important physiological features 
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outside the blink intervals. Our approach maintains the temporal resolution and dynamic range 

of the original signal while addressing potential artefacts introduced during reconstruction. 

Finally, the model integrates dynamic recovery with advanced noise representation to 

balance computational efficiency and realism. By avoiding the pitfalls of over-complication and 

maintaining a firm grounding in physiological principles, it provides a reliable and theoretically 

sound tool for reconstructing pupil size during blink-induced disruptions, making it broadly 

applicable across experimental contexts. The combination of physiological validity, computational 

efficiency, and adaptability positions our model as a valuable contribution to the field of 

pupillometry, addressing key limitations of existing approaches while maintaining practical utility 

for researchers studying pupil dynamics in diverse experimental settings. 

Prpip - A package in Python for reconstructing pupil 

To facilitate the seamless processing of pupil size data and automate the reconstruction 

methodology described in this work, we have developed a Python package named prpip. This 

package integrates all key steps, ensuring a streamlined and reproducible workflow. The package 

supports multiple file formats, allowing researchers to load raw pupillometry data in various 

standard structures. Blink detection is implemented using the method offered by Khodami (2025)67 

to refine onset and offset estimation, improving the accuracy of missing data identification. By 

consolidating all aspects of blink-affected pupillometry data processing into a single, user-friendly 

package, prpip provides a comprehensive solution for researchers analysing pupil dynamics. This 

tool significantly enhances the efficiency and reproducibility of pupil data analysis, making it 

accessible for diverse applications in cognitive science, neuroscience, and psychology. 

To install it you may use pip command by running following command as shown in Figure 3. 

 

Figure 3. pip install command of installing the prpip package from https://pypi.org. All details 

and the Wiki are provided at https://pypi.org/prpip (accessed 01 August 2025)  

Discussion 

The methodology presented in this paper addresses a significant challenge in pupillometry: 

the accurate reconstruction of pupil size dynamics during blink intervals. By implementing an 

exponential recovery model with dynamically adjusted time constants and incorporating both 

signal-dependent and baseline noise components, our approach successfully generates 

physiologically plausible pupil size trajectories during periods of data loss. 

The primary strength of our method lies in its strong theoretical foundation. The exponential 

recovery model is congruent with established research on pupillary light response dynamics 
32,51,52,78. Unlike linear interpolation techniques, which disregard the inherent nonlinear 

characteristics of pupil recovery, our exponential model accurately captures the rapid initial 

changes and gradual returns to baseline that characterise actual pupil behaviour 54,55. 
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Additionally, our approach to estimating the noise scale 𝑘 directly from the data represents a 

significant advancement. By analysing local segments surrounding each blink event and computing 

the ratio of standard deviation to range, we derive noise parameters that reflect the actual 

variability in the recorded pupil signals. This data-driven approach ensures that the reconstructed 

segments exhibit realistic fluctuations that match the surrounding signal characteristics. The 

adaptive time constant formulation provides another advantage, as it accommodates varying blink 

durations. This feature is particularly important when processing extended recordings where blink 

durations may vary considerably due to fatigue or attentional factors. 

Finally, the selective application of Savitzky-Golay filtering to the reconstructed segments 

effectively reduces high-frequency artefacts while preserving the underlying shape of the pupil 

response curves. This targeted smoothing approach prevents over-filtering of the original recorded 

data while ensuring seamless transitions between recorded and reconstructed portions of the signal. 

Limitations and Considerations 

Despite its strengths, our method has several limitations that warrant consideration. First, 

the exponential recovery model assumes that the pupil's behaviour during blinks follows the same 

dynamics as responses to light stimuli. While theoretically justified, this assumption may not hold 

under all experimental conditions, particularly during complex cognitive tasks that induce 

significant pupillary fluctuations. 

Conclusion 

This paper presented a comprehensive approach to pupil size reconstruction during blink 

periods, combining an exponential recovery model with data-driven noise estimation and targeted 

signal filtering. Our method addresses a critical challenge in pupillometry research and provides 

a robust solution for generating continuous pupil size traces from recordings affected by blinks. 

The implementation's key features include: (1) a physiologically grounded exponential 

recovery function, (2) dynamic adjustment of recovery time constants based on blink duration, 

(3) local estimation of noise parameters from surrounding data segments, and (4) selective 

application of Savitzky-Golay filtering to ensure smooth transitions between recorded and 

reconstructed data. 

By advancing the methodology for pupil data preprocessing, this work contributes to the 

broader goal of establishing pupillometry as a reliable tool for investigating cognitive processes, 

emotional responses, and neurological conditions. The ability to maintain signal continuity despite 

blink-related interruptions represents an important step toward fully harnessing pupillary 

measures' potential as non-invasive windows into neural activity. 
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Appendix A 

Local Noise Addition for Signal Reconstruction 

Signal reconstruction is a critical aspect of physiological and natural signal processing, 

particularly when dealing with missing data. Our research proposes a local noise addition approach 

as a method to enhance reconstructed pupil size signals, introducing a physiological feature that 

better reflects the natural variability of the data. This approach acknowledges the inherent noise 

present in biological systems and integrates it into the reconstruction process, aiming to improve 

both realism and fidelity. To substantiate our findings, we conducted a comparative analysis of 

various reconstruction methods, drawing insights from existing literature and empirical findings. 

The distinction between local and global reconstruction approaches has been extensively 

studied. Local methods, as demonstrated by 37, have been particularly effective in reconstructing 

frequency-modulated signals with substantial missing data. Their approach utilised a sliding 

window technique combined with an iterative orthogonal matching pursuit algorithm, successfully 

handling missing data rates of 45% and 50% while preserving structural similarity. This finding 

aligns with our hypothesis that locally applied transformations, such as noise addition, can 

enhance the fidelity of reconstructed signals. 

Global methods, such as the Bayesian inference-based technique employed by 79, have shown 

remarkable accuracy, achieving an 𝑅2 statistic greater than 0.95 in synthetic graph signal 

reconstructions. However, such methods typically require extensive computational resources and 

are highly dependent on structured missing data patterns. In contrast, the Environmental Space 

Time Improved Compressive Sensing (ESTI-CS) algorithm introduced 80,81 demonstrated 

robustness even in the presence of 90% missing data, maintaining an error ratio of 20% or lower. 

These results emphasise the strength of global approaches in extreme data loss conditions but do 

not necessarily account for the stochastic fluctuations observed in physiological signals. 

The necessity of local adaptations in signal fidelity preservation has been underscored in 

multiple domains. As measured 37 reconstruction quality using the structural similarity index, a 

metric that aligns with our objective of ensuring physiological plausibility in pupil size 

reconstruction. Similarly, methods reviewed 42 In proteomics data reconstruction, the importance 

of retaining signal characteristics specific to the domain was emphasised, particularly in mass 

spectrometry datasets, where local similarity-based approaches such as REM and LSA proved 

effective. 

Computational efficiency also plays a crucial role in method selection. Local reconstruction 

techniques tend to be computationally efficient 82, as observed in studies which described their 

local fusion frame-based method as having relatively low complexity. In contrast, Bayesian 

inference methods and global compressive sensing approaches often involve higher computational 

costs 79–81. Other works demonstrated that the RecPF algorithm reduced per-iteration costs  

compared to the Two-step Iterative Shrinkage/Thresholding (TwIST) method for MRI 

reconstruction, reinforcing the trade-off between computational expense and reconstruction 

accuracy 34. 
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Our proposed method of local noise addition contributes to this discourse by leveraging 

the strengths of local approaches while incorporating stochastic variability intrinsic to 

physiological signals. The structural similarity preservation observed supports the feasibility of 

noise addition as a mechanism for improving pupil size reconstruction without excessive 

computational demand 83. Furthermore, graph-based approaches suggest that localised 

modifications, particularly those that account for smoothness and local-set dependencies, can be 

advantageous in reconstructing signals with missing data 42,84. 

The findings reinforce the significance of local methods in reconstructing signals where 

physiological variations are integral to the underlying process. By incorporating local noise, we 

align with principles observed in time-series reconstructions, sensor network data, and proteomics 

signal recovery. This approach not only enhances the realism of the reconstructed pupil size but 

also maintains the computational advantages inherent to local techniques. Future work will 

involve empirical validation of this method across diverse missing data scenarios, further 

solidifying its role in physiologically plausible signal reconstruction. 
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